End-to-end recurrent denoising autoencoder embeddings for speaker identification
نویسندگان
چکیده
Speech ‘in-the-wild’ is a handicap for speaker recognition systems due to the variability induced by real-life conditions, such as environmental noise and emotional state of speaker. Taking advantage principles representation learning, we aim design recurrent denoising autoencoder that extracts robust embeddings from noisy spectrograms perform identification. The end-to-end proposed architecture uses feedback loop encode information regarding into low-dimensional representations extracted spectrogram autoencoder. We employ data augmentation techniques additively corrupting clean speech with in database containing real stressed speech. Our study presents joint optimization both denoiser identification modules outperforms independent components under stress distortions well handcrafted features.
منابع مشابه
OFDM-Autoencoder for End-to-End Learning of Communications Systems
We extend the idea of end-to-end learning of communications systems through deep neural network (NN)based autoencoders to orthogonal frequency division multiplexing (OFDM) with cyclic prefix (CP). Our implementation has the same benefits as a conventional OFDM system, namely singletap equalization and robustness against sampling synchronization errors, which turned out to be one of the major ch...
متن کاملDeep Speaker: an End-to-End Neural Speaker Embedding System
We present Deep Speaker, a neural speaker embedding system that maps utterances to a hypersphere where speaker similarity is measured by cosine similarity. The embeddings generated by Deep Speaker can be used for many tasks, including speaker identification, verification, and clustering. We experiment with ResCNN and GRU architectures to extract the acoustic features, then mean pool to produce ...
متن کاملFault Identification using end-to-end data by imperialist competitive algorithm
Faults in computer networks may result in millions of dollars in cost. Faults in a network need to be localized and repaired to keep the health of the network. Fault management systems are used to keep today’s complex networks running without significant cost, either by using active techniques or passive techniques. In this paper, we propose a novel approach based on imperialist competitive alg...
متن کاملFault Identification using end-to-end data by imperialist competitive algorithm
Faults in computer networks may result in millions of dollars in cost. Faults in a network need to be localized and repaired to keep the health of the network. Fault management systems are used to keep today’s complex networks running without significant cost, either by using active techniques or passive techniques. In this paper, we propose a novel approach based on imperialist competitive alg...
متن کاملGeneralized End-to-End Loss for Speaker Verification
In this paper, we propose a new loss function called generalized end-to-end (GE2E) loss, which makes the training of speaker verification models more efficient than our previous tuple-based endto-end (TE2E) loss function. Unlike TE2E, the GE2E loss function updates the network in a way that emphasizes examples that are difficult to verify at each step of the training process. Additionally, the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neural Computing and Applications
سال: 2021
ISSN: ['0941-0643', '1433-3058']
DOI: https://doi.org/10.1007/s00521-021-06083-7